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The structure of velocity in the outer region of turbulent channel flow (y+ & 100) is
examined statistically to determine the average flow field associated with spanwise
vortical motions. Particle image velocimetry measurements of the streamwise and wall-
normal velocity components are correlated with a vortex marker (swirling strength) in
the streamwise–wall-normal plane, and linear stochastic estimation is used to estimate
the conditional average of the two-dimensional velocity field associated with a swirling
motion. The mean structure consists of a series of swirling motions located along a
line inclined at 12◦–13◦ from the wall. The pattern is consistent with the observations
of outer-layer wall turbulence in which groups of hairpin vortices occur aligned in the
streamwise direction. While the observational evidence for the aforementioned model
was based upon both experimental and computational visualization of instantaneous
structures, the present results show that, on average, the instantaneous structures occur
with sufficient frequency, strength, and order to leave an imprint on the statistics of
the flow as well. Results at Reτ = 547 and 1734 are presented.

1. Introduction
The structure of turbulent flow near a boundary has been studied extensively over

the past decades (for a comprehensive review of this history, the reader should consult
Robinson 1991 and, more recently, the collection edited by Panton 1997). Moreover,
there is broad evidence that a vortical structure qualitatively similar to the ‘horseshoe
vortex’ proposed by Theodorsen (1952) does exist in wall turbulence. (Throughout this
paper, ‘hairpin vortex’ is used in a modern sense to include quasi-streamwise vortices
connected to inclined necks and a spanwise arch that may have the shape of a hairpin,
horseshoe, cane, or randomly perturbed variant. The essential feature is that the arch
is strong enough to induce a local ejection event under it. A more complete discussion
can be found in Adrian, Meinhart & Tomkins 2000, referred to herein as AMT.)
At low Reynolds number, Smith (1984) reported the existence of hairpin loops and
proposed an organized alignment of these structures in the streamwise direction. This
near-wall model is consistent with the long streamwise extent of low-speed streaks
and the observation of multiple ejections of low-speed fluid within a given bursting
event. Smith et al. (1991) extended this work to argue that hairpins can actually
regenerate from an existing vortex under the proper conditions. This lends support
to the proposition that there exists a coherent ordering of hairpin vortices in wall
turbulence.

More recently, Zhou et al. (1997, 1999) studied the evolution of an initial vortical
structure qualitatively similar to a hairpin vortex in a low Reynolds number direct
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numerical simulation (DNS) of turbulent channel flow. Given sufficient strength of
the initial structure, multiple hairpins were observed both upstream and downstream
of this structure. These newly formed structures mature and then generate additional
hairpin vortices. This sequence of autogenerated events was generally consistent with
those proposed by Smith et al. (1991). Additionally, Zhou et al. (1999) found clear
evidence indicating that non-symmetric vortices have stronger growth rates, and are,
therefore, preferred. Finally, Zhou et al. (1997) compared the velocity patterns seen
in the three-dimensional DNS data with two-dimensional particle image velocimetry
(PIV) velocity measurements in a turbulent boundary layer. This comparison led
to the identification of a two-dimensional hairpin vortex signature which was used
to identify the ‘imprints’ of the three-dimensional structures in the two-dimensional
experimental data.

Although the work cited above supports the idea that hairpin vortices align in a
coherent manner, it was performed at relatively low Reynolds numbers. Thus, the
conclusions drawn from this body of research are, in general, mostly applicable to
only the near-wall region of moderate to high Reynolds number situations. The
body of knowledge about the structure of the outer layer of wall turbulence at
Reynolds numbers that are not low is much more sparse compared to that of the
near-wall region. However, it has been established that the outer layer does contain
inclined structures which are associated with ejections and sweeps (Brown & Thomas
1977; Chen & Blackwelder 1978; Head & Bandyopadhyay 1981). Further, Head &
Bandyopadhyay (1981) report the existence of vortex loops, horseshoe, and hairpin
structures in smoke visualizations of a zero-pressure-gradient turbulent boundary
layer at higher Reynolds numbers (Reθ 6 17 500). They also successfully visualize
ramp-like patterns at the outer-most edge of the boundary layer, and propose this to
be the imprint of groups of hairpin vortices inclined away from the wall at a shallow
angle (15◦–20◦). Bandyopadhyay (1980) developed a simple model that predicts this
angle to be 18◦.

Recent PIV measurements in a turbulent boundary layer by AMT provide strong
evidence that structures consistent with hairpin vortices occur throughout the outer
layer at both low and high Reynolds numbers. They also showed that the vortices
actually align coherently in the streamwise direction, creating a larger-scale coherent
motion referred to as a hairpin vortex packet. The PIV data permitted visualization
of the packets within the interior of the boundary layer, and this evidence showed
that the packets occur throughout the outer region in a hierarchy of scales. AMT
proposed a model whereby packets of multiple hairpin vortices are created at the wall
and grow to occupy the entire boundary layer. This model provides a link between the
evidence supporting the existence of vortex organization in both the near-wall and
outer layer of the flow. The hairpin packet is characterized by two distinct features:

(a) a series of hairpin vortices aligned in the streamwise direction, with their heads
forming an interface inclined away from the wall at angles between 12◦ and 20◦;

(b) a region of relatively uniform, low-momentum fluid lying beneath the inclined
interface created by the heads of the vortices due to the collective induction of the
vortices.

Vortex packets can contain ten or more individual vortices which propagate as a
coherent entity, and they can extend to twice the outer length scale in the streamwise
direction. Due to the two-dimensional nature of the experimental technique used by
AMT, the character of the vortex organization in the spanwise direction could not
be observed directly. However, by combining visualizations of the three-dimensional
structure found in DNS, which are necessarily low Reynolds number, with the two-
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dimensional data taken at significantly higher Reynolds number, a picture emerges
that generally supports the hairpin packet model.

Since vortex organization in the outer region is commonly observed in instantaneous
realizations of wall turbulence (including the atmospheric boundary layer (Hommema
& Adrian 2001)), it is conjectured that the vortex packet is a dominant and robust
feature of wall-bounded turbulent flows within the region where structural similarity
exists (the structural character of channel, pipe, and boundary-layer flows is quite
similar below y/h ∼ 0.6, i.e. below the wake region). If this is indeed the case, these
structures (both the vortices and the packets) should leave their imprint upon the
statistics of the flow in some manner. However, spectra and two-point correlation
functions to date seem to indicate the absence of such structure. The present work
reports evidence that the structure of the two-point spatial correlations contains
a clear picture of organized turbulent motion that is consistent with the pattern
associated with a hairpin vortex packet.

2. Experiment
The experiments which form the basis of this work are performed in turbulent

channel flow. The working fluid is air and the facility is driven by a centrifugal
blower. The apparatus has a channel cross-section of 5.08 cm × 51.44 cm (2h × w,
where h and w are the half-height and width of the channel, respectively) and has
a development length of 216h. Particle image velocimetry is used to measure two-
dimensional velocity (u, v) fields in the streamwise–wall-normal (x, y)-plane along the
channel centreline. The measurement domain is h× h and 3500 independent velocity
realizations are acquired at each of three Reynolds numbers: Reτ = uτh/ν = 547, 1133,
and 1734. The mean velocity, RMS velocity, and Reynolds stress profiles over this
range of Reynolds numbers are consistent with fully developed turbulent channel
flow. Further experimental details can be found in Christensen (2001).

3. Instantaneous structure
Before introducing the instantaneous evidence of vortex organization in the outer

layer, it is worthwhile to discuss the vortex identification tools used to interpret
instantaneous velocity realizations. The vortex definition offered by Kline & Robinson
(1989) is adopted here. It states that a vortex is defined as a region of concentrated
vorticity around which the pattern of streamlines is roughly circular when viewed in a
frame moving with the centre of the vortex. In two-dimensional velocity fields, a vortex
is visualized properly when the convection velocity of the vortex is removed from
the field. In this frame of reference, the velocity vector pattern will consist of closed
streamlines in the spirit of the Kline & Robinson (1989) definition. Further, rather
than using vorticity to identify vortex cores, a different vortex identification technique,
referred to as swirling strength, is used in the present work. Swirling strength, λci (i is
not an index in this definition, but an abbreviation for the word ‘imaginary’), is the
imaginary portion of the complex eigenvalue of the local velocity gradient tensor and
is an unambiguous measure of rotation (Zhou et al. 1999). Unlike vorticity, swirling
strength does not highlight regions of intense shear and it has been shown to be an
effective identifier of true vortex cores (Adrian, Christensen & Liu 2000). In addition,
swirling strength yields patterns that are very similar to those found using the vortex
identification technique of Jeong & Hussain (1995). Since complex eigenvalues of the
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velocity gradient tensor occur in conjugate pairs, the positive imaginary portion is
assigned to λci. Therefore, by convention, λci > 0∀x.

To illustrate the dominance of the vortex organization in the outer layer and also
the apparent Re-independence of this behaviour, results from the Reτ = 547 and
Reτ = 1734 datasets will be presented. Figure 1 shows typical instantaneous PIV
velocity fields in the streamwise–wall-normal plane of the channel at (a) Reτ = 547
and (b) Reτ = 1734. A constant convection velocity (Uc = 0.85UCL in both cases,
where UCL is the centreline velocity) is removed from each field to reveal those vortex
structures whose cores are advecting at this speed. Contours of swirling strength
(λci) are shown in the background of the velocity field to highlight the locations of
vortex cores. The fields contain many examples of vortex cores interpreted to be
associated with the heads of hairpin vortices advecting in the streamwise direction.
A lifting of low-speed fluid away from the wall (referred to as a Q2 event in the
nomenclature introduced by Wallace, Eckelmann, & Brodkey 1972; Willmarth & Lu
1972) just under and upstream of the hairpin head is consistent with the hairpin
vortex signature introduced by Zhou et al. (1997) and AMT. A single vortex packet
is visible in each realization and the outer edge of each packet is roughly defined
by the dashed line superimposed upon the velocity field. At Reτ = 547, four vortices
are aligned in the field of view and the angle of inclination of this packet, relative
to the wall, is approximately 17◦. At Reτ = 1734, five vortices are aligned in the
field of view, and the angle of inclination of this packet is 16◦. The physics of these
instantaneous realizations is entirely consistent with the results of Zhou et al. (1997,
1999), and AMT, indicating that vortex organization is a common feature in the outer
region of wall-bounded turbulent flows. The spacing between successive vortices is a
fundamental parameter of the packets, but studies of instantaneous realizations have
not been able to define this spacing unambiguously.

We are not aware of any other propositions in the literature that account for the
vortex organization seen in the outer layer as simply as the hairpin packet model.
Further, the results presented here and introduced by Zhou et al. (1997, 1999), and
AMT are not inconsistent with the work in which quasi-streamwise vortices are
thought to be the dominant near-wall structure (Schoppa & Hussain 1997; Brooke
& Hanratty 1993; Heist, Hanratty & Na 2000, among others). In fact, near the wall,
asymmetric hairpin-like structures, as defined in AMT, are consistent (apart from
naming convention) with quasi-streamwise vortices arched slightly in the spanwise
direction (similar to the arch vortices studied by Heist et al. 2000, for example). In
addition, there is no apparent inconsistency because the latter body of research cited
above only focused upon the very near-wall region of the flow (y+ . 60), while the
present work focuses upon the outer region (the logarithmic layer and beyond).

4. Statistical analysis
Although the vast majority of instantaneous realizations are consistent with the

notion that hairpin vortex organization is a common feature of the outer region,
the parameters of these patterns must be investigated statistically. This organization
should be evident within the statistics of the flow if these structures have a consistent
character (spacing of vortex heads and angle of inclination). If, however, variations
between instantaneous realizations of packets are large enough, the imprint can be
destroyed in the averaging process. Therefore, one could pose the question: Given
the presence of a single spanwise vortex core (believed to be associated with the head
of a hairpin vortex), what is the average fluctuating velocity field associated with this
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Figure 1. Instantaneous velocity realizations in turbulent channel flow with a constant convection
velocity, Uc = 0.85UCL, removed. (a) Reτ = 547; (b) Reτ = 1734. Contours of swirling strength are
shown in the background to highlight the location of vortex cores.

physical event? The best estimate of the average velocity field is the conditional
average of the velocity field given the presence of a vortex core (represented by
λci): 〈u′(x′)|λci(x)〉, where x = (x, y). Since direct computation of this conditional
average is impractical, it must be estimated in some fashion. Stochastic estimation
of conditional averages minimizes the error between the conditional average and
the estimate in a mean-square sense (Adrian 1988) (the reader is directed to this
reference for a comprehensive discussion of stochastic estimation). Studies of many
types of turbulent fields have shown that linear estimates are surprisingly accurate
and relatively simple to form (Adrian, Moin & Moser 1987). The conditional average
postulated above can be estimated in a linear fashion as

〈u′j(x′)|λci(x)〉 ≈ Ljλci(x), (4.1)

where the kernel Lj is determined by minimizing the mean-square error between
the estimate and the conditional average (recall that i is not an index). This error
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minimization gives

〈u′j(x′)|λci(x)〉 ≈ 〈λci(x)u′j(x′)〉
〈λci(x)λci(x)〉λci(x). (4.2)

The estimate of the conditional average is only a function of unconditional two-
point correlation data. Therefore, (4.2) allows one to reconstruct the average velocity
behaviour associated with a given value of λci at x. However, it is important to
note that since the event of the conditional average is simply a single scalar value,
it is sufficient to specify λci > 0 (a non-trivial event). That is, the character of the
estimate of the conditionally averaged velocity field remains the same for all values of
λci > 0, since the magnitudes of the velocity vectors within a given estimate are simply
amplified or attenuated by the chosen value of λci. Therefore, if one specifies λci = λaci
and computes an estimate, and then specifies λci = λbci (λbci 6= λaci) and computes
another estimate, these estimates will be identical except for a constant scaling factor
defined by the ratio of λaci and λbci. Since thresholding of λci is not necessary, the
estimate remains objective beyond the choice of event type and event location in the
wall-normal direction.

4.1. Correlation functions

As is indicated by (4.2), the two-point correlation functions between swirling strength
and velocity are necessary for estimation of the conditionally averaged velocity field
given a vortex core. The two-point correlation between swirling strength and the
streamwise velocity fluctuation, for example, is defined as

Rλu(rx, y) =
〈λci(x, yref )u

′(x+ rx, y)〉
σλ(yref )σu(y)

, (4.3)

where σ refers to the root-mean square of the given quantity. Again, recall that λci > 0
∀ x, so Rλu and Rλv retain the sign of u′ and v′, respectively. Therefore, the correlation
functions embody structural information in the spirit of Bandyopadhyay & Watson
(1988). In this study, Rλu and Rλv are formed from 3500 statistically independent
realizations at each Reynolds number, yielding correlation functions in which the
statistical sampling errors are minimal.

Figures 2 and 3 illustrate Rλu and Rλv for yref/h = 0.15 at Reτ = 547 (y+
ref = 83.6)

and Reτ = 1734 (y+
ref = 256.0), respectively. Both the streamwise and wall-normal

correlation functions are strongest near the reference line (as expected). Rλu is negative
below and positive above yref , while Rλv is positive to the left of and negative to the
right of rx = 0. This behaviour is entirely consistent with the correlation between a
region of strong swirling strength and the velocity vector pattern of a hairpin vortex
head which, by definition, has a clockwise rotation. The wall-normal correlation is
stronger upstream than downstream of rx = 0, and the streamwise correlation is
stronger below yref than above it, which is consistent with a Q2 event induced by the
head and leg(s) of the vortex. Additionally, a large-scale, inclined interface is noted
in both the streamwise and wall-normal correlations. The correlation beneath this
interface is negative in Rλu and positive in Rλv . This behaviour is consistent with
the conjecture that the flow is dominated by a series of hairpin vortices aligned in
the streamwise direction, whose heads lie along a line inclined away from the wall,
beneath which exists a region of relatively uniform low-momentum fluid created by
the collective induction of the vortices. This conjecture is valid even if the vortices
are not complete hairpins, but rather cane-like vortices, for example, which have a
single leg connected to the spanwise-oriented head. It is also worth noting that the
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Figure 2. Two-point correlations between velocity and swirling strength at Reτ=547 for y+
ref =83.6

(yref/h = 0.15). (a) Rλu; (b) Rλv . The horizontal dashed line indicates the location of yref .

behaviour of Rλu and Rλv at Reτ = 547 and Reτ = 1734 shows definite similarity,
indicating that this large-scale behaviour is relatively insensitive to Reynolds number.

4.2. Stochastic estimation results

The two-point correlations between swirling strength and velocity presented in the
previous section are used to perform the stochastic estimation of 〈u′j(x′)|λci(x)〉.
Figure 4(a) illustrates the estimate of the conditionally averaged velocity field at
Reτ = 547 given λci(x) = σλ(yref/h = 0.15). The length of each vector was forced
to unity by normalizing each with its magnitude. This is necessary because the
stochastically estimated velocity field is strongest around the event point, and this
strength tends to obscure weaker motions away from the event location. As expected,
a distinct swirling motion is centred at the event location (shown by a solid circle).
This swirling motion is consistent with the key features established in the hairpin
vortex signature: closed streamlines representing the head of the vortex and a Q2

event just upstream and below the head produced by the induction of the hairpin
head and leg(s). Swirling motions (labelled A–C) are also evident both upstream
and downstream of the event location. They lie along a line which is inclined from



440 K. T. Christensen and R. J. Adrian

–1200 –800 –400

r+
x

rx/h

0 400 800 1200
1000

750

500

250

0

y
h y+

0.45

0.30

0.15

0
–0.50 –0.25 0 0.25 0.50

(a)

–1200 –800 –400 0 400 800 1200
1000

750

500

250

0

y
h y+

0.45

0.30

0.15

0
–0.50 –0.25 0 0.25 0.50

(b)

Figure 3. As figure 2 but at Reτ = 1734 for y+
ref = 256.0.

the wall. A swirling motion (A) is present upstream of the event location, while
two distinct swirling patterns (B, C) are evident downstream of the event location.
This line of swirling patterns is inclined away from the wall at an angle of 13◦. It
is worth noting that the swirling patterns both upstream and downstream of the
event location appear slightly smeared in the streamwise direction. This ‘smeared’
appearance is probably due to fluctuation of the vortex spacing about its mean. If
the vortex spacing were fixed from packet to packet, the swirling motions would
appear much more defined and circular. However, since the streamwise spacing of
the vortices naturally varies slightly from packet to packet, this variation tends to
broaden the extent of the average swirling motions in the streamwise direction.

The stochastic estimate of the conditionally averaged velocity field at Reτ = 1734
given λci(x)=σλ(yref/h = 0.15) appears in figure 4(b). As expected, a strong swirling
motion is centred at the event location (shown by a solid circle) and is consistent
with the hairpin vortex signature. However, just as in the low Reynolds number
result, additional swirling motions (labelled A–C) are also evident both upstream and
downstream of the event location and lie along a line which is inclined from the wall
at an angle of 14◦.

The qualitative similarity between the stochastically estimated velocity fields of
figure 4 and the instantaneous fields shown in figure 1 is clear. The angle of incli-



Vortex packets in wall turbulence 441

0

0.5

0.4

0.3

0.2

0.1

0 0.4 0.8 1.2
0

50

100

150

200

250

y+

x+

225 450 675

B

13˚

C

A

y
h

(a)

0

0.5

0.4

0.3

0.2

0.1

0 0.4 0.8 1.2
0

y+

700 1400

B

14˚

C

A

y
h

(b)

175

350

525

700

875

x/h

2100

Figure 4. Linear stochastic estimation of 〈u′j(x′)|σλ(yref/h = 0.15)〉. The location of the swirling

strength event is indicated by a solid circle. (a) Reτ = 547 (y+
ref = 83.6); (b) Reτ = 1734 (y+

ref = 256.0).
Vectors have been normalized to unity by their respective magnitudes to highlight swirling motions
away from the event location. Comparison to the instantaneous fields shown in figure 1 indicates
that the vortex organization in the outer region is a dominant and robust feature.

nation of the stochastically estimated fields is similar to those in the instantaneous
realizations, as is the vortex spacing. The ordering of the swirling patterns in the
estimate of the conditionally averaged velocity fields is telling, because it is entirely
consistent with the hairpin vortex packet model of AMT. Further, the estimates of the
conditionally averaged velocity illustrate how dominant, persistent, and well-ordered
the vortex organization truly is in the outer region. At the highest Reynolds number,
it is quite surprising that the vortex organization is able to survive the averaging
process since the range of length scales is three times broader than the range of the
Reτ = 547 case. It is worth noting that the mean spacing of the swirling motions are
essentially the same at Reτ = 547 and Reτ = 1734 when scaled with the outer length
scale, h. This implies a Reynolds number insensitivity of vortex spacing, as was also
suggested in the instantaneous realizations of figure 1.

Given the robust vortex organization presented here, it is logical to consider the
possibility of packet organization of some form. For example, evidence exists that
the largest packets may align to form very large-scale motions in turbulent pipe flow
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Kim & Adrian 1999. Also, one can imagine packets nesting within one another and
propagating coherently as an even larger-scale coherent entity. If so, this behaviour
should be present within the stochastically estimated velocity fields in figure 4.
However, careful examination of these fields over a larger field of view than shown
here does not indicate any evidence of packet nesting. This is not entirely surprising,
since packets of different sizes would tend to travel at different velocities (AMT).
Therefore, the packets would have no fixed spatial relationship. It is still possible,
however, that hairpin packets might propagate coherently one behind another (as a
train of packets). Unfortunately, the field of view of the measurements presented here
is not large enough to consider this possibility.

5. Summary and conclusions
Statistical evidence is presented which supports the notion that the outer layer of

wall turbulence is populated by spatially coherent groups of vortices. The organization
of the vortices leaves a distinct imprint upon the statistics of the flow at both low
and high Reynolds numbers. Near yref and rx = 0, the two-point correlations between
swirling strength and the streamwise and wall-normal velocities are consistent with the
head of a hairpin vortex. Additionally, both correlation functions show a large-scale
behaviour that is consistent with the statistical signature of hairpin vortex packets
embedded within the flow. This conjecture is further supported by the estimate of
the conditionally averaged velocity field given a vortex core, which shows multiple
swirling motions inclined away from the wall and aligned in the streamwise direction.
This vortex organization is consistent with the hairpin vortex packets seen in the work
of Zhou et al. (1997, 1999), and AMT. Although the outer-layer vortex organization is
not inconsistent with the current body of literature, we know of no other propositions
in the literature that can explain this striking phenomenon as simply as the hairpin
vortex packet.
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